Sumsets of reciprocals in prime fields and multilinear Kloosterman sums
نویسندگان
چکیده
منابع مشابه
Kloosterman sums for prime powers in P-adic fields
L’accès aux articles de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://jtnb.cedram. org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement personnelle du copiste est constitutive d’une infraction...
متن کاملKloosterman sums and primitive elements in Galois fields
1. Introduction. Let F q denote the finite (Galois) field of order q, a power of a prime p. The multiplicative group F
متن کاملSums of Reciprocals of Polynomials over Finite Fields
Consider the following example (typical in college algebra): 1 x2 + 1 x2 + 1 + 1 x2 + x + 1 x2 + x+ 1 = 4x + 6x + 8x + 6x + 3x+ 1 x2(x+ 1) (x2 + 1) (x2 + x+ 1) . Now let’s assume that all the coefficients in the above are from the binary field F2 = Z2 = {0, 1}. The result becomes much cleaner: 1 x2 + 1 x2 + 1 + 1 x2 + x + 1 x2 + x+ 1 = 1 (x2 + x)(x4 + x) . After a brief introduction to finite f...
متن کاملModular Invariants for Real Quadratic Fields and Kloosterman Sums
We investigate the asymptotic distribution of integrals of the j-function that are associated to ideal classes in a real quadratic field. To estimate the error term in our asymptotic formula, we prove a bound for sums of Kloosterman sums of half-integral weight which is uniform in every parameter. To establish this estimate we prove a variant of Kuznetsov’s formula where the spectral data is re...
متن کاملSum-product Estimates in Finite Fields via Kloosterman Sums
We establish improved sum-product bounds in finite fields using incidence theorems based on bounds for classical Kloosterman and related sums.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Izvestiya: Mathematics
سال: 2014
ISSN: 1064-5632,1468-4810
DOI: 10.1070/im2014v078n04abeh002703